Probabilistic Abductive Logic Programming using Dirichlet Priors

نویسندگان

  • Calin-Rares Turliuc
  • Luke Dickens
  • Alessandra Russo
  • Krysia Broda
چکیده

Probabilistic logic programming has traditionally focused on languages where probabilities or weights are specified or inferred directly, rather than through Bayesian priors. To address this limitation, we propose a probabilistic logic programming language that bridges the gap between logical and probabilistic inference in categorical models with Dirichlet priors. The language is described in terms of its general plate model, syntax, semantics and the relation between the three. A prototype implementation is evaluated on two case studies: latent Dirichlet allocation (LDA) on synthetic data, where we compare it with collapsed Gibbs sampling, and repeated insertion model (RIM) on real data. Universal probabilistic programming is not always scalable beyond toy examples on some models. However, our promising results show that the inference yields similar results to state-of-the-art solutions reported in the literature, produced with model-specific implementations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Abductive Logic Programming in Constraint Handling Rules

A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. Compared with other probabilistic versions of abductive logic programming, the approach is characterized by higher genera...

متن کامل

Implementing Probabilistic Abductive Logic Programming with Constraint Handling Rules

A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. Compared with other probabilistic versions of abductive logic programming, the approach is characterized by higher genera...

متن کامل

Abductive Stochastic Logic Programs for Metabolic Network Inhibition Learning

We revisit an application developed originally using Inductive Logic Programming (ILP) by replacing the underlying Logic Program (LP) description with Stochastic Logic Programs (SLPs), one of the underlying Probabilistic ILP (PILP) frameworks. In both the ILP and PILP cases a mixture of abduction and induction are used. The abductive ILP approach used a variant of ILP for modelling inhibition i...

متن کامل

Probabilistic Abductive Logic Programming using Possible Worlds

Reasoning in very complex contexts often requires purely deductive reasoning to be supported by a variety of techniques that can cope with incomplete data. Abductive inference allows to guess information that has not been explicitly observed. Since there are many explanations for such guesses, there is the need for assigning a probability to each one. This work exploits logical abduction to pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015